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Abstract. Model sets (or cut and project sets) provide a familiar and commonly used method
of constructing and studying nonperiodic point sets. Here we extend this method to situations
where the internal spaces are no longer Euclidean, but instead spaces withp-adic topologies or
even with mixed Euclidean/p-adic topologies. We show that a number of well known tilings
precisely fit this form, including the chair tiling and the Robinson square tilings. Thus the scope
of the cut and project formalism is considerably larger than is usually supposed. Applying the
powerful consequences of model sets we derive the diffractive nature of these tilings.

1. Introduction

The cut and project method of constructing nonperiodic point sets, as developed by Kramer
and others in the early 1980s [10, 11, 9, 3, 12], is one of the basic tools in the mathematical
study of quasicrystals and aperiodic order. The intuition behind their use is that quasiperiodic
point sets, such as those arising in many nonperiodic tilings and also in the diffraction
patterns of physical quasicrystals, may be viewed as arising from the projection of lattices
in some higher-dimensional spaces. Thus the physical space is complemented by an internal
space (possibly of some other dimension), a lattice is located in the combined physical-
internal space pair, and the projection maps are used to create a cut and project scheme.

The same type of mathematical structure had also arisen (before the recent excitement
about quasicrystals, and in a very different context) in the work of Meyer [13] in which
the formalism is expressed entirely in terms of locally compact Abelian groups. In [14, 19]
these ideas were taken up and extended in the context of aperiodic order, with the result that
a considerable amount of the mathematical theory underlying these cut and project sets (or
model sets) can now be seen to hold in great generality. Until now, however, no attempt has
actually been made to see to what extent existing aperiodic structures might be explained
in terms of these more general types of spaces. In this paper we address this question,
showing that a number of familiar tilings and substitution systems, so far not contained
under the aegis of the cut and project formalism, are in fact based on internal spaces with
non-Euclideantopologies, namelyp-adic topologies or mixed Euclidean/p-adic topologies.

There is a variety of discrete structures known that display a pure-point diffraction
spectrum, i.e. the Fourier transform of their autocorrelation (which is a positive measure) is
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pure point, compare [8, 22]. Among the known examples are model sets, but also certain
inflation-generated point sets and tilings, e.g. the chair or the sphinx tiling [22]. They are
limit-periodic structures with a countably, but not finitely, generated Fourier module—so,
they cannot be described in the ‘conventional’ cut and project set-up where the internal
space is Euclidean.

It is the aim of this contribution to start to develop a proper generalization of the
projection method, in the spirit of Meyer, to include such limit-periodic and even limit-
quasiperiodic sets. Here, we explain, in an illustrative fashion, how this works. A detailed
approach to model sets over arbitrary internal groups, and especially to aspects of diffraction,
will appear in [20].

Let us recall the notion of a cut and project scheme. By definition, this consists of a
collection of spaces and mappings:

Rd π1←− Rd ×G π2−→ G

∪
L

(1)

whereRd is a real Euclidean space andG is some locally compact Abelian group,π1 and
π2 are the projection maps onto them, andL ⊂ Rd ×G is a lattice, i.e. a discrete subgroup
such that the quotient group(Rd ×G)/L is compact. We assume thatπ1|L is injective and
thatπ2(L) is dense inG. We callRd (resp.G) the physical (resp. internal) space.

In this definition, we have already oriented the situation to physical applications by
assuming that the physical space is indeed a real Euclidean space. On the other hand,
allowingG to be an arbitrary locally compact Abelian group is precisely the point at which
we are going beyond the usual situation of an internal space that is also Euclidean.

Given any subset� ⊂ G, we define a corresponding set3(�) ⊂ Rd by

3(�) = {π1(x)|x ∈ L, π2(x) ∈ �}. (2)

We call such a set3 a model set(or cut and project set) if the following condition is
fulfilled.

W1. � = int(�) 6= ∅ is compact.
Furthermore, we are mainly interested in the situation where the boundary of� does

not contain any points ofπ2(L). If this is the case, we call3(�) regular. The importance
of regular model sets is that they are necessarily repetitive [19]. Note that, if� fulfils W1,
∂� (which equals�\int(�)) is nowhere dense and hence a meagre set. Then, it follows
from the Baire category theorem that no countable union of translates of∂� can coverG
which is a Baire space. In particular, it is always possible to choose a shiftc ∈ G such that
the boundary ofc +� satisfies the additional regularity condition.

In the following, showing that a certain set is a model set actually means, more precisely,
to show that there existG, L and� subject to the above conditions such that3(�) is regular
and locally isomorphic (LI) to the given set (for terminology, see [1, 19] and references
therein). This way, our results are valid for entire LI-classes, even if, for simplicity, we
only talk of single tilings.

2. p-adic topologies and inverse limits of finite groups

Let p be a prime number in the integersZ. Usingp we can define a metric on the rational
numbersQ, and by restriction onZ, in the following way. For eacha ∈ Z, we define its
p-value,νp(a), as the largest exponentk for which pk dividesa (with νp(0) := ∞). This
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function is extended to thep-adic valuationνp : Q −→ Z by νp(a/b) := νp(a)− νp(b) for
all rational numbersa/b. We now define the ‘distance’ between two rational numbersx, y

asd(x, y) = p−νp(y−x).
It is not hard to see that this does define a metric onQ, in which closeness to 0 is

equivalent to high divisibility by the primep. The completion of the rationals under this
topology is the field ofp-adic numberŝQp and the completion ofZ is the subring ofp-adic
integers,̂Zp. Any p-adic integer has a unique expansion (as a convergent series) in the form∑∞

n=0 anp
n where theap are integers in the range 06 ap < p. The topologies defined by

such metrics have rather counter-intuitive properties. For example, for each non-negative
integerk, the setpk · Ẑp, the set of elements of̂Zp divisible bypk, is the ball of radiusp−k

and is clopen, i.e. both open and closed.̂Zp, seen as a topological space, is both compact
and totally disconnected. In particular,̂Qp and Ẑp are locally compact Abelian groups
under addition. Thus, we can usêZp to construct interesting cut and project schemes for
Rd simply by takingG := Ẑp andL = Zd embedded diagonally intoRd× Ẑp. For more on
p-adic numbers and other totally disconnected groups, the reader may consult [15, 21, 7, 2].

There is another description of̂Zp which is more revealing of its appearance in the
context of self-similarity and generalizes what we have just done. Let

F1← F2← F3← · · · (3)

be an inverse system of finite Abelian groups, i.e. eachFi is a finite Abelian group (with
discrete toplogy) and the arrows represent surjective group homomorphisms. Define the set
of compatible sequences

←−
F := {x̃ = (x1, x2, . . .)|xi ∈ Fi, xi ←7 xi+1, i ∈ N}. (4)

←−
F is given the structure of a group by component-wise addition. It is structured as a
topological group by the induced topology from the product

∏∞
i=1Fi . Equivalently, the

subgroups
←−
F n = {x̃ ∈ ←−F |x1 = x2 = · · · = xn−1 = 0} (5)

form a subbase of open neighbourhoods of 0 in
←−
F . Since [F : Fn] is finite, the subgroups

←−
F n are also closed. With this topology,

←−
F is a compact totally disconnected Abelian

group (so, in particular, a locally compact Abelian group). Groups of this type are called
profinite groups.

As an example, for each prime numberp, we can construct̂Zp by the inverse system
←−
Z p : Z/pZ← Z/p2Z← Z/p3Z← · · · . (6)

The relevance to the work here is this: ifθ : L→ L is an injective homomorphism that
is a self-similarity of3, then there is a clear distinction between the case thatθ(L) = L
(θ is a ‘unit’) and the case thatθ(L) ⊂ L, but θ(L) 6= L. In the latter case, [L : θ(L)] is
finite and we have the inverse system

←−
L (θ) : L/θ(L)← L/θ2(L)← L/θ3(L)← · · · . (7)

The compact group
←−
L is invariant under the action ofθ . Note that it contains a canonical

copy ofL itself via the mapping

x 7→ ((x modθ(L))←7 (x modθ2(L))←7 (x modθ3(L))←7 · · ·). (8)

Again, we obtain a cut and project scheme via the diagonal embedding ofL in Rm ×←−L .
Let us now turn to some applications.
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3. A limit-periodic substitution system

Consider the primitive three-letter substitution system

a→ ab b→ abc c→ abcc. (9)

The standard analysis of the corresponding substitution matrix [17] shows that a proper
geometric realization demands length ratios`(a) : `(b) : `(c) = 1 : 2 : 3, while all three
letters finally occur with equal frequency13.

To obtain a bidirectional infinite sequence that is a fixed point, we may start with the
pair c|a and continue to apply the substitution rule:

. . . ababcabccabcc|ababcababcabccababcababcabcc . . . . (10)

We can imagine this as labelling the tiles of a tiling ofR in which the tiles are of lengths
1, 2, 3 respectively. If we identify each tile with its right-hand endpoint, starting with a tile
of type a (length 1) at the origin, then we end up with a sequence of numbers

. . .− 26,−24,−21,−18,−17,−15,−12,−9,−8,−6,−3,

0, 1, 3, 4, 6, 9, 10, 12, 13, 15, 18, 19. . . . (11)

The main property of this sequence is its invariance under the transformationx 7→ 3x.
This self-similarity with arational scaling factor is the signal that there may be ap-adic
interpretation. At the same time, as 3 is not a unit, this sequence is a candidate for a
so-called limit-periodic point set, compare [5]. In fact, this sequence can be given a 3-
adic interpretation. The coordinates of the tiles of the three types (resp. their right-hand
endpoints) can be explicitly given as follows
• type a:

⋃∞
k=2(1+ 3+ · · · + 3k−2)+ 3kZ

• type b:
⋃∞
k=2(2+ 1+ 3+ · · · + 3k−2)+ 3kZ

• type c: 32Z ∪ (⋃∞k=3(−3− · · · − 3k−2)+ 3kZ).
It is easy to see that these sets are invariant under the process of formation of the tiles

(i.e. rule (9)). Furthermore, their densities in the lattice of integersZ are easily computed
to each be equal to16, thus accounting for the entire tiling ((1+ 2+ 3) · 1

6 = 1).
Interpreting these setsp-adically, we see that they are dense subsets of the unions of

open balls formed by replacing 3kZ by 3kẐ3 in each of the sets above. In this way, we
obtain three ‘windows’, each with compact closure. Furthermore, it is not hard to see that
each of them has a boundary with just finitely many points.

Using the latticeL := {(n, n)|n ∈ Z} ⊆ R × Ẑ3 we obtain a cut and project scheme
and conclude that the point sets corresponding to each of the three tile types is a model set.
As a consequence, the sequence is an example with a pure-point diffraction spectrum. This
observation is consistent with the following application of Dekking’s criterion [4] to a locally
equivalent sequence [1], which would share pure pointness with our above example owing
to the invariance of this spectral property under mutual local derivability. Indeed, replacing
the configurationab by a new tileA of length 3 one obtains a sequence invariant under the
substitution ruleA→ AAc, c→ Acc which has a pure-point diffraction spectrum because
the new substitution rule is of constant length and exhibits a so-called coincidence [4].

4. The chair tiling

The two-dimensional chair tiling is defined by the substitution rule in figure 1(a). This has
recently been shown to display a pure-point diffraction spectrum [22]. Instead of working
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Figure 1. Geometric realization of the chair tiling.

with the chair tiling directly, we introduce a convenient modification by substituting each
‘chair’ by three decorated squares as in figure 1(b). Since this transformation is local in
the sense of [1] and can be locally inverted by the rule given in figure 1(c), it follows that
showing that the chair tiling is a cut and project tiling is equivalent to showing that the
modified tiling is. With the help of the transformation rules, one sees immediately that the
modified tiling fulfils the substitution rule in figure 1(d).

A particular tilingT0 in the LI class under consideration can be defined in the following
way. Starting with a decorated squareS0 of side length 1 centred at the origin of a fixed
coordinate system where the arrow points towards the upper right corner( 1

2,
1
2), one performs

the following two steps successively.
(i) Perform the affine transformation

T : x 7→ T x := 2Rx + 1
2(e1+ e2) (12)

whereR denotes rotation byπ/2 andei are the canonical unit vectors.
(ii) Apply the (appropriately rotated) substitution rule of figure 1(d).
This way, increasingly larger portions of a unique member of the LI class are obtained

(see figure 1(e)).
As a consequence of the construction, the centres of the decorated squares form the

latticeZ2. Let Pk be the subset of the centres of squares oriented asRkS0, k = 0, 1, 2, 3,
respectively. Clearly, the tiling is completely determined by these subsets.

We shall show that eachPk is a model set with internal groupG = Ẑ2× Ẑ2. As in our
previous one-dimensional example, this will be done by writingPk as a union of cosets of
certain sublattices ofZ2. Because of the partial symmetry of the decoration of the second
substitution step (see figure 1(f )), the tiles which are decorated in this figure must repeat
with period 4Z2. If C is the undecorated square underlyingS0, viewed as a subset ofR2,
we must have, as a consequence of the self-similarity involved in the definition ofT0, that

(Pk ∩ T iC)+ 2i · 4Z2 ⊆ Pk (13)

for all i ∈ N, k ∈ {0, 1, 2, 3}. Therefore, if we setPk,i := Pk ∩ T iC, we obtain

Pk =
⋃
i∈N

⋃
t∈Pk,i

(t + 2i · 4Z2) (14)

which is the desired decomposition ofPk.
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Using the substitution rule, the finite setsPk,i := Pk ∩ T iC can actually be calculated
by recursion:

P0,0 = {0} Pk,0 = ∅, k ∈ {1, 2, 3} (15)

Pk,i+1 =
3⋃
l=0

T iMlT
−i (P(k−nl)4,i ) (16)

for the integersn0 := 0, n1 := 1, n2 := 2, n3 := 1 and the affine transformationsMl given
by M0x := x, M1x := Rx + e1, M2x := R2x + e1+ e2, M3x := Rx + e2.

In much the same way as in the one-dimensional example, the decomposition (14) leads
to a description ofPk as model sets. The latticeZ2 is embedded inG in the canonical
fashion. In the embedding spaceR2×G we choose the latticeL := {(n,n)|n ∈ Z2}. For
eachi ∈ N, the closure with respect to the 2-adic topology of the sublattice 2i · 4Z2 is an
open and compact subgroup ofG, actually equal to 2i · 4G. ReplacingZ2 by G in (14)
and taking the 2-adic closure gives the description of windows�k ⊆ G in G. It is easily
seen thatPk is the model set usingG as the internal space,L as the lattice and�k as the
window.

Finally, we show that the boundary of each open set�k has Haar measure 0. Letµ be
the Haar measure onG and assume it is normalized toµ(G) = 1. Then the measure of any
cosett + 2i · 4 ·G is 1/[G : (2i · 4 ·G)]. On the other hand, the proportion of points ofZ2

lying in the cosett +2i ·4Z2 is 1/[Z2 : (2i ·4Z2)] which is exactly the same number. Then
the proportion of points ofZ2 occupied by the cosets belonging toPk is exactly the same as
µ(�k). Since

⋃3
k=0Pk = Z2 we obtain

∑3
k=0µ(�k) = 1. From�0 ∩ (�1 ∪�2 ∪�3) = ∅

we have 1> µ(�0)+
∑3

k=1µ(�k) >
∑3

k=0µ(�k) = 1 and soµ(�0) = µ(�0). Similarly,
one obtainsµ(∂�k) = 0 for k = 0, 1, 2, 3 as required.

5. A limit-quasiperiodic example

The substitution matrix of the primitive two letter substitution system

a→ aab b→ abab (17)

has the Perron–Frobenius eigenvalueλ := 2+√2 which is a Pisot–Vijayaraghavan number
but not a unit. Therefore, any possible description as a model set of the resulting substitution
sequence will have to use more complicated groups thanRn as embedding space.

A geometric representation of the substitution system is obtained by replacing symbols
a andb by intervals of length̀ (a) = 1 and`(b) = √2. If we denote the sets of left-hand
endpoints of thea andb intervals by3a and3b, the substitution rule leads to the following
system of recursion relations:

3a = (λ3a) ∪ (`(a)+ λ3a) ∪ (λ3b) ∪ (`(a)+ `(b)+ λ3b) (18)

3b = (2`(a)+ λ3a) ∪ (`(a)+ λ3b) ∪ (2`(a)+ `(b)+ λ3b) (19)

where the right-hand sides represent disjoint unions. Both3a and 3b are subsets of
the groupZ[

√
2] which can be mapped ontoZ2 ⊆ R2 by sending`(a) to e1 and

`(b) to e2. The transformationt 7→ λt in Z[
√

2] induces the linear transformation
φ : e1 7→ 2e1+ e2, e2 7→ 2e1+ 2e2 of R2. Note thatφ(Z2) ⊂ Z2, but φ(Z2) 6= Z2.

The transformationφ has the two eigenvalues 2±√2; we may identify the ‘physical’
spaceR with the subspaceV of R2 corresponding to the eigenvalue 2+√2. Then, all points
3a and3b of a substitution sequence according to (17) are images of uniquely determined
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Figure 2. The limit quasiperiodic example.

points of Z2 under the projection onto the physical spaceV along the second invariant
subspace ofφ. (Note that, as the transformation matrix ofφ is not normal, this projection
is not orthogonal with respect to the canonical metric ofR2; see figure 2.) Because the
second eigenvalue is smaller than 1, the pre-images must lie in a bounded strip parallel to
V , and it is easily calculated that, for the sequence generated fromba, where the middle
vertex is the origin, the pre-images lie in the stripV + {t (0,−1− √2)|0 6 t 6 1} (see
figure 2).

The problem is that not all points ofZ2 which are in the strip are pre-images of points
in the sequence, therefore the embedding so far does not exhibit the sequence as a model
set. However, there is an open substrip whose model set is a subset of the sequence. This
can be seen by observing that the pre-images of the sequence can be connected by a path
which only passes along horizontal and vertical bonds in the square lattice (cf figure 2). If
one omitted any point ofZ2 in the strip

V + {(0,−
√

2/2)+ t (0,−1−
√

2/2)|06 t 6 1} (20)

then no such connected path would be possible any more. This observation is the analogue
of finding periodic subsets in the limit periodic examples; all further steps are more or less
completely determined.

We extendR2 by the inverse limitG := ←−Z 2(φ) (see equation (7)) and embedZ2 in
R2 × G in the canonical fashion as the latticeL. The homomorphismφ can be uniquely
extended toR2 × G. From the above considerations, if we take as internal groupG′ the
product of the second eigenspace ofφ with G, we find an open window inG′ such that
the corresponding model set is a subset of the substitution sequence3 := 3a ∪ 3b. The
recursion relations (18) and (19) can be transferred to the internal groupG′. This gives an
iterated function system for two windows�a and�b related to typea andb vertices. This
system has a unique pair of compact sets(�a,�b) as its attractor.

Obviously,3 ⊆ 3(�) for � := �a ∪�b. Owing to the recursion relation (18),λ3 is a
subset of3a. From the observation (20) we can find an open subset ofG inside�a. Then,
using the recursion relation both for3a,b and�a,b we can find an open setU ⊂ � which
has� as its closure such that3(U) ⊆ 3 ⊆ 3(�). Since�\U has no interior,3(U) and
3(�) differ only on a set of points that isnot relatively dense, i.e. on a set (inR) that has
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gaps of arbitrary length.
From the argument at the end of the introduction, we can find ac ∈ G′ so that3(c+�)

is regular, and hence repetitive, as is the original substitution sequence3. Now let us show
that3 and3(c+�) are locally isomorphic, thus establishing3 to be a model set as defined
in the introduction.

From the above argument, we know that there are arbitrarily long intervals where3(U),
3 and3(�) coincide. Let us select such an interval of lengthR. Then, we also know that
there exists a relatively dense set of translationst such thatt + 3(c + �) coincides both
with 3(U) and3(�) on that interval, too. Since3 is repetitive, this establishes that3
and3(c +�) are locally isomorphic.

This finally reveals the points3a and3b as model sets based on the mixed internal

spaceR×←−Z 2(φ).

6. Diffraction

The diffraction of a generalized model set can be calculated in much the same way as for
model sets in the conventional framework [20]. Given a model set3 in Rd , one can show
that its characteristic Dirac comb, i.e. the measure

ω = ω3 :=
∑
t∈3

δt (21)

has a unique autocorrelation,

γ = γω := lim
r→∞

1

vol(Br(0))
(ω3r ∗ ω̃3r )

= lim
r→∞

1

vol(Br(0))

∑
s,t∈3r

δt−s (22)

whereBr(0) is the ball of radiusr around 0,3r := 3 ∩ Br(0) and ω̃ denotes the measure

defined by(ω̃, φ) = (ω, φ̃) with φ̃(x) := φ(−x).
A good theory of diffraction exists for model sets under the following additional

assumption.
W2. The boundary of� has measure 0 (measure being the Haar measure ofG).
If the internal space is Euclidean, this is tantamount to saying that the window is a

Riemann measurable set.
If one interprets the measureω as a set of point scatterers at the sites of3, then the

corresponding diffraction pattern is the Fourier transformγ̂ of the autocorrelationγ . This
Fourier transformγ̂ is itself a positive measure and has, for general model sets3 with
property W2, only a point component, i.e. can be written in the form

γ̂ =
∑
k∈F

C(k)δk (23)

with non-negative coefficientsC(k). The setF in (23) is the projection intoRd of the dual
lattice ofL in the dual ofRd ×G.

Without going into detailed calculations, let us give the result in the case of the limit-
periodic substitution sequence (9) for which we can easily verify condition W2—indeed,
the boundary of the window is a finite point set. We denote the right-hand endpoints of the
intervalsa, b andc by3a, 3b and3c, and consider them as the positions of point scatterers
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of strengthsha, hb andhc, respectively. The Fourier transform of the autocorrelationγω of
the measure

ω = ha
∑
t∈3a

δt + hb
∑
t∈3b

δt + hc
∑
t∈3c

δt (24)

is then given by

γ̂ =
∑
k∈F
|haAa(k)+ hbAb(k)+ hcAc(k)|2δk (25)

with the ‘amplitudes’

Aa(k) = 1

3n
eπ im/3n

(
e−π im/3+ (−1)m

2

)
Ab(k) = 1

3n
e−π im/3n−1

(
e−π im/3+ (−1)m

2

)
Ab(k) = 1

3n
e−π im/3n−1

(
eπ im/3+ (−1)m

2

)
.

(26)

The sum in (25) runs over the Fourier moduleF ,

F :=
{
k = m

3n

∣∣∣∣(n = 2, m ∈ Z) or (n > 3, m 6≡ 0 mod(3))

}
(27)

namely the set of all rational numbersk whose denominators are, at worst, powers of
3. Each such numberk is uniquely expressible in the form indicated in (27). It is this
one-to-one parametrization that appears in (26).

It is easy to see thatF is indeed the projection intoR of the dual ofZ in the dual of
R× Ẑ3.

In the case of the chair tiling, we already established W2, and the diffraction can be
calculated along similar lines to the previous example. The limit-quasiperiodic substitution
system of section 5 is much more complicated, and we have not even been able to verify
W2 so far.

7. Comments

The formalism of model sets has been shown to encompass situations not hitherto considered
within its scope by using internal spaces with non-Euclidean topologies. The situations in
which such topologies occur are signalled by the presence of chains of decreasing sublattices
of ever increasing scale.

Let us point out a few more examples. The period-doubling substitution rulea → ba,
b→ aa, which is known to have a pure-point spectrum from Dekking’s criterion [4], gives
rise to a 2-adic model set. One of the oldest aperiodic tilings is the Robinson tiling [18],
which is based on a set of six decorated squares. This tiling has an interpretation in terms
of lattices of overlapping squares (see [6] for an illustration) which clearly shows its 2-adic
nature (something already realized by Robinson). In fact, the centres of the tiles of each
type form a 2-adic model set. In the course of working out these examples, we discovered
that the chair tilings and the Robinson square tilings are actually closely related. Suitably
decorated, the chair tiling can be transformed into a Robinson tiling and in the reverse
direction, suitably undecorated, the Robinson tiling can be transformed into a chair tiling.

The sphinx tiling as well as the new hexagonal tiling of Penrose [16] undoubtedly also
admit 2-adic interpretations.
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The substitution tilings described above have so far been considered as belonging to the
classes of aperiodic tilings called limit-periodic and limit-quasiperiodic tilings, compare [5].
Potential limit-(quasi)periodic tilings can be recognized by displaying an inflation/deflation
symmetry in the sense of [1] with an inflation multiplier that is an algebraic integer larger
than 1, but not a unit. Not all of them will display a pure-point diffraction spectrum, as
can be seen from the Thue–Morse chain (defined bya→ ab, b→ ba) or a variant of our
system (9) (defined bya → ab, b→ abc, c→ ccab). These cases cannot be model sets.
Our analysis shows nevertheless that a unified description of at least some of the cases with
pure-point spectrum is possible if one slightly generalizes the class of internal spaces which
are admitted.

This generalization turns out to be a very natural one. Many properties of conventional
model sets can be proved to hold also in the more general case. Among these are the
uniform densities of general model sets (see [19]) and, if W2 is also fulfilled, the pure-point
character of the diffraction spectrum (see [20]). It would be nice to find an exhaustive
criterion for those cases with pure-point diffraction spectrum.
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